Список вопросов базы знанийЕГЭ Математика профильный
Вопрос id:435482 Тема/шкала: 10-Задачи с прикладным содержанием-Иррациональные уравнения и неравенства Расстояние (в км) от наблюдателя, находящегося на небольшой высоте Вопрос id:435483 Тема/шкала: 10-Задачи с прикладным содержанием-Иррациональные уравнения и неравенства Для определения эффективной температуры звёзд используют закон Стефана-Больцмана, согласно которому мощность излучения нагретого тела Р, измеряемая в ваттах, прямо пропорциональна площади его поверхности и четвёртой степени температуры: Р Вопрос id:435484 Тема/шкала: 10-Задачи с прикладным содержанием-Иррациональные уравнения и неравенства Расстояние от наблюдателя, находящегося на небольшой высоте Вопрос id:435485 Тема/шкала: 10-Задачи с прикладным содержанием-Иррациональные уравнения и неравенства Расстояние от наблюдателя, находящегося на небольшой высоте Вопрос id:435486 Тема/шкала: 10-Задачи с прикладным содержанием-Иррациональные уравнения и неравенства Гоночный автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением a км/ч2. Вопрос id:435487 Тема/шкала: 10-Задачи с прикладным содержанием-Разные задачи При адиабатическом процессе для идеального газа выполняется закон Вопрос id:435488 Тема/шкала: 10-Задачи с прикладным содержанием-Разные задачи В ходе распада радиоактивного изотопа, его масса уменьшается по закону Вопрос id:435489 Тема/шкала: 10-Задачи с прикладным содержанием-Разные задачи Уравнение процесса, в котором участвовал газ, записывается в виде Вопрос id:435490 Тема/шкала: 10-Задачи с прикладным содержанием-Разные задачи Установка для демонстрации адиабатического сжатия представляет собой сосуд с поршнем, резко сжимающим газ. При этом объeм и давление связаны соотношением Вопрос id:435491 Тема/шкала: 10-Задачи с прикладным содержанием-Разные задачи Eмкость высоковольтного конденсатора в телевизоре Вопрос id:435492 Тема/шкала: 10-Задачи с прикладным содержанием-Разные задачи Для обогрева помещения, температура в котором равна Вопрос id:435493 Тема/шкала: 10-Задачи с прикладным содержанием-Разные задачи Водолазный колокол, содержащий в начальный момент времени Вопрос id:435494 Тема/шкала: 10-Задачи с прикладным содержанием-Разные задачи Находящийся в воде водолазный колокол, содержащий Вопрос id:435495 Тема/шкала: 10-Задачи с прикладным содержанием-Тригонометрические уравнения и неравенства Мяч бросили под углом Вопрос id:435496 Тема/шкала: 10-Задачи с прикладным содержанием-Тригонометрические уравнения и неравенства Деталью некоторого прибора является квадратная рамка с намотанным на неe проводом, через который пропущен постоянный ток. Рамка помещена в однородное магнитное поле так, что она может вращаться. Момент силы Ампера, стремящейся повернуть рамку, (в Н Вопрос id:435497 Тема/шкала: 10-Задачи с прикладным содержанием-Тригонометрические уравнения и неравенства Датчик сконструирован таким образом, что его антенна ловит радиосигнал, который затем преобразуется в электрический сигнал, изменяющийся со временем по закону Вопрос id:435498 Тема/шкала: 10-Задачи с прикладным содержанием-Тригонометрические уравнения и неравенства Очень лeгкий заряженный металлический шарик зарядом Вопрос id:435499 Тема/шкала: 10-Задачи с прикладным содержанием-Тригонометрические уравнения и неравенства Небольшой мячик бросают под острым углом Вопрос id:435500 Тема/шкала: 10-Задачи с прикладным содержанием-Тригонометрические уравнения и неравенства Небольшой мячик бросают под острым углом Вопрос id:435501 Тема/шкала: 10-Задачи с прикладным содержанием-Тригонометрические уравнения и неравенства Плоский замкнутый контур площадью Вопрос id:435502 Тема/шкала: 10-Задачи с прикладным содержанием-Тригонометрические уравнения и неравенства Трактор тащит сани с силой Вопрос id:435503 Тема/шкала: 10-Задачи с прикладным содержанием-Тригонометрические уравнения и неравенства Трактор тащит сани с силой Вопрос id:435504 Тема/шкала: 10-Задачи с прикладным содержанием-Тригонометрические уравнения и неравенства При нормальном падении света с длиной волны Вопрос id:435505 Тема/шкала: 10-Задачи с прикладным содержанием-Тригонометрические уравнения и неравенства Два тела массой Вопрос id:435506 Тема/шкала: 10-Задачи с прикладным содержанием-Тригонометрические уравнения и неравенства Катер должен пересечь реку шириной Вопрос id:435507 Тема/шкала: 10-Задачи с прикладным содержанием-Тригонометрические уравнения и неравенства Скейтбордист прыгает на стоящую на рельсах платформу, со скоростью Вопрос id:435508 Тема/шкала: 10-Задачи с прикладным содержанием-Тригонометрические уравнения и неравенства Груз массой 0,08 кг колеблется на пружине со скоростью, меняющейся по закону Вопрос id:435509 Тема/шкала: 10-Задачи с прикладным содержанием-Тригонометрические уравнения и неравенства Груз массой 0,08 кг колеблется на пружине со скоростью, меняющейся по закону Вопрос id:435510 Тема/шкала: 10-Задачи с прикладным содержанием-Тригонометрические уравнения и неравенства Скорость колеблющегося на пружине груза меняется по закону Вопрос id:435511 Тема/шкала: 10-Задачи с прикладным содержанием-Разные задачи Независимое агентство намерено ввести рейтинг
Аналитик, составляющий формулу, считает, что объективность публикаций ценится вдвое, а информативность — втрое дороже, чем оперативность. В результате, формула примет вид
Каким должно быть число Вопрос id:435512 Тема/шкала: 10-Задачи с прикладным содержанием-Разные задачи Рейтинг
где Вопрос id:435513 Тема/шкала: 10-Задачи с прикладным содержанием-Разные задачи Рейтинг
где Вопрос id:435514 Тема/шкала: 10-Задачи с прикладным содержанием-Разные задачи Независимое агентство намерено ввести рейтинг новостных интернет-изданий на основе оценок информативности
Аналитики, составляющие формулу рейтинга, считают, что объективность ценится втрое, а информативность публикаций — вдвое дороже, чем оперативность и качество сайта. Таким образом, формула приняла вид
Каким должно быть число Вопрос id:435515 Тема/шкала: 10-Задачи с прикладным содержанием-Разные задачи Независимое агентство намерено ввести рейтинг новостных интернет-изданий на основе оценок информативности
Аналитики, составляющие формулу рейтинга, считают, что объективность ценится втрое, а информативность публикаций — впятеро дороже, чем оперативность и качество сайта. Таким образом, формула приняла вид
Если по всем четырем показателям какое-то издание получило одну и ту же оценку, то рейтинг должен совпадать с этой оценкой. Найдите число Вопрос id:435516 Тема/шкала: 08-Стереометрия-Куб
Вопрос id:435517 Тема/шкала: 08-Стереометрия-Куб
Во сколько раз увеличится объем куба, если все ребра увеличить в 5 раз? Вопрос id:435519 Тема/шкала: 08-Стереометрия-Прямоугольный параллелепипед
Вопрос id:435520 Тема/шкала: 08-Стереометрия-Прямоугольный параллелепипед
Вопрос id:435521 Тема/шкала: 08-Стереометрия-Прямоугольный параллелепипед
Вопрос id:435522 Тема/шкала: 08-Стереометрия-Прямоугольный параллелепипед
Вопрос id:435523 Тема/шкала: 08-Стереометрия-Прямоугольный параллелепипед
Вопрос id:435524 Тема/шкала: 08-Стереометрия-Прямоугольный параллелепипед
Вопрос id:435525 Тема/шкала: 08-Стереометрия-Прямоугольный параллелепипед
Вопрос id:435526 Тема/шкала: 08-Стереометрия-Прямоугольный параллелепипед
Вопрос id:435527 Тема/шкала: 08-Стереометрия-Прямоугольный параллелепипед
Вопрос id:435528 Тема/шкала: 08-Стереометрия-Прямоугольный параллелепипед
Вопрос id:435529 Тема/шкала: 08-Стереометрия-Прямоугольный параллелепипед
Вопрос id:435530 Тема/шкала: 08-Стереометрия-Прямоугольный параллелепипед
Вопрос id:435531 Тема/шкала: 08-Стереометрия-Прямоугольный параллелепипед
Вопрос id:435532 Тема/шкала: 08-Стереометрия-Прямоугольный параллелепипед
|
километров над землeй, до наблюдаемой им линии горизонта вычисляется по формуле
, где
(км) — радиус Земли. С какой высоты горизонт виден на расстоянии 4 километра? Ответ выразите в километрах.
, где
— постоянная, площадь S измеряется в квадратных метрах, а температура Т — в градусах Кельвина. Известно, что некоторая звезда имеет площадь S
а излучаемая ею мощность P
Определите температуру этой звезды. Приведите ответ в градусах Кельвина.
километров над землёй, до наблюдаемой им линии горизонта вычисляется по формуле
где
— радиус Земли. С какой высоты горизонт виден на расстоянии 160 километров? Ответ выразите в километрах.
километров над землёй, до наблюдаемой им линии горизонта вычисляется по формуле
где
— радиус Земли. С какой высоты горизонт виден на расстоянии 144 километров? Ответ выразите в километрах.
в конце
где
— пройденный автомобилем путь. Определите ускорение, с которым должен двигаться автомобиль, чтобы, проехав 250 метров, приобрести скорость 60 км/ч. Ответ выразите в км/ч2.
м) определяется формулой
, где
– сила тока в рамке,
Тл – значение индукции магнитного поля,
м – размер рамки,
– число витков провода в рамке,
– острый угол между перпендикуляром к рамке и вектором индукции. При каком наименьшем значении угла
(в градусах) рамка может начать вращаться, если для этого нужно, чтобы раскручивающий момент M был не меньше 0,75 Н
м?
, где
– время в секундах, амплитуда
В, частота
/с, фаза
. Датчик настроен так, что если напряжение в нeм не ниже чем
В, загорается лампочка. Какую часть времени (в процентах) на протяжении первой секунды после начала работы лампочка будет гореть?
Кл скатывается по гладкой наклонной плоскости. В момент, когда его скорость составляет
м/с, на него начинает действовать постоянное магнитное поле, вектор индукции
которого лежит в той же плоскости и составляет угол
с направлением движения шарика. Значение индукции поля
Тл. При этом на шарик действует сила Лоренца, равная
(Н) и направленная вверх перпендикулярно плоскости. При каком наименьшем значении угла
шарик оторвeтся от поверхности, если для этого нужно, чтобы сила
была не менее чем
Н? Ответ дайте в градусах.
к плоской горизонтальной поверхности земли. Максимальная высота полeта мячика, выраженная в метрах, определяется формулой
, где
м/с – начальная скорость мячика, а
– ускорение свободного падения (считайте
м/с
). При каком наименьшем значении угла
(в градусах) мячик пролетит над стеной высотой 4 м на расстоянии 1 м?
к плоской горизонтальной поверхности земли. Расстояние, которое пролетает мячик, вычисляется по формуле
(м), где
м/с – начальная скорость мячика, а
– ускорение свободного падения (считайте
м/с
). При каком наименьшем значении угла (в градусах) мячик перелетит реку шириной 20 м?
м
находится в магнитном поле, индукция которого равномерно возрастает. При этом согласно закону электромагнитной индукции Фарадея в контуре появляется ЭДС индукции, значение которой, выраженное в вольтах, определяется формулой
, где
– острый угол между направлением магнитного поля и перпендикуляром к контуру,
Тл/с – постоянная,
– площадь замкнутого контура, находящегося в магнитном поле (в м
). При каком минимальном угле
(в градусах) ЭДС индукции не будет превышать
В?
кН, направленной под острым углом
к горизонту. Работа трактора (в килоджоулях) на участке длиной
м вычисляется по формуле
. При каком максимальном угле
(в градусах) совершeнная работа будет не менее 2000 кДж?
кН, направленной под острым углом
к горизонту. Мощность (в киловаттах) трактора при скорости
м/с равна
. При каком максимальном угле
(в градусах) эта мощность будет не менее 75 кВт?
нм на дифракционную решeтку с периодом
нм наблюдают серию дифракционных максимумов. При этом угол
(отсчитываемый от перпендикуляра к решeтке), под которым наблюдается максимум, и номер максимума
связаны соотношением
. Под каким минимальным углом
(в градусах) можно наблюдать второй максимум на решeтке с периодом, не превосходящим 1600 нм?
кг каждое, движутся с одинаковой скоростью
м/с под углом
друг к другу. Энергия (в джоулях), выделяющаяся при их абсолютно неупругом соударении определяется выражением
. Под каким наименьшим углом
(в градусах) должны двигаться тела, чтобы в результате соударения выделилось не менее 50 джоулей?
м и со скоростью течения
м/с так, чтобы причалить точно напротив места отправления. Он может двигаться с разными скоростями, при этом время в пути, измеряемое в секундах, определяется выражением
, где
– острый угол, задающий направление его движения (отсчитывается от берега). Под каким минимальным углом
(в градусах) нужно плыть, чтобы время в пути было не больше 200 с?
м/с под острым углом
к рельсам. От толчка платформа начинает ехать со скоростью
(м/с), где
кг – масса скейтбордиста со скейтом, а
кг – масса платформы. Под каким максимальным углом
(в градусах) нужно прыгать, чтобы разогнать платформу не менее чем до 0,25 м/с?
, где
– время в секундах. Кинетическая энергия груза, измеряемая в джоулях, вычисляется по формуле
, где
– масса груза (в кг),
– скорость груза (в м/с). Определите, какую долю времени из первой секунды после начала движения кинетическая энергия груза будет не менее
Дж. Ответ выразите десятичной дробью, если нужно, округлите до сотых.
, где
– время в секундах. Кинетическая энергия груза вычисляется по формуле
, где
– масса груза (в кг),
– скорость груза (в м/с). Определите, какую долю времени из первой секунды после начала движения кинетическая энергия груза будет не менее
Дж. Ответ выразите десятичной дробью, если нужно, округлите до сотых.
(см/с), где t – время в секундах. Какую долю времени из первой секунды скорость движения превышала 2,5 см/с? Ответ выразите десятичной дробью, если нужно, округлите до сотых.
интернет-магазина вычисляется по формуле
,
— средняя оценка магазина покупателями (от 0 до 1),
— оценка магазина экспертами (от 0 до 0,7) и
— число покупателей, оценивших магазин. Найдите рейтинг интернет-магазина «Альфа», если число покупателей, оставивших отзыв о магазине, равно 24, их средняя оценка равна 0,86, а оценка экспертов равна 0,11.
интернет-магазина вычисляется по формуле
— средняя оценка магазина покупателями (от 0 до 1),
— оценка магазина экспертами (от 0 до 0,7) и
— число покупателей, оценивших магазин. Найдите рейтинг интернет-магазина «Бета», если число покупателей, оставивших отзыв о магазине, равно 20, их средняя оценка равна 0,65, а оценка экспертов равна 0,37.
, оперативности
, объективности публикаций
, а также качества сайта
. Каждый отдельный показатель оценивается читателями по 5-балльной шкале целыми числами от 1 до 5.
, чтобы издание, у которого все оценки наибольшие, получило бы рейтинг 1?
, оперативности
, объективности публикаций
, а также качества сайта
. Каждый отдельный показатель оценивается читателями по 5-балльной шкале целыми числами от -2 до 2.
, при котором это условие будет выполняться.
Диагональ куба равна
. Найдите его объем.
Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины.
Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Площадь поверхности параллелепипеда равна 16. Найдите его диагональ.
Прямоугольный параллелепипед описан около единичной сферы. Найдите его площадь поверхности.
Площадь грани прямоугольного параллелепипеда равна 12. Ребро, перпендикулярное этой грани, равно 4. Найдите объем параллелепипеда.
Объем прямоугольного параллелепипеда равен 24. Одно из его ребер равно 3. Найдите площадь грани параллелепипеда, перпендикулярной этому ребру.
Объем прямоугольного параллелепипеда равен 60. Площадь одной его грани равна 12. Найдите ребро параллелепипеда, перпендикулярное этой грани.
Три ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 4, 6, 9. Найдите ребро равновеликого ему куба.
Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4. Диагональ параллелепипеда равна 6. Найдите объем параллелепипеда.
Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 3. Объем параллелепипеда равен 36. Найдите его диагональ.
Диагональ прямоугольного параллелепипеда равна
и образует углы 30
, 30
и 45
с плоскостями граней параллелепипеда. Найдите объем параллелепипеда.
Ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2, 3. Найдите его площадь поверхности.
Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4. Диагональ параллелепипеда равна 6. Найдите площадь поверхности параллелепипеда.
Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Объем параллелепипеда равен 6. Найдите площадь его поверхности.
Найдите угол
прямоугольного параллелепипеда, для которого
,
,
. Дайте ответ в градусах.