Тесты онлайн, бесплатный конструктор тестов. Психологические тестирования, тесты на проверку знаний.
Список вопросов базы знанийТеория вероятностей и математическая статистика (курс 1)Вопрос id:753677 Для того, чтобы по выборке объема 100 построить доверительный интервал для математического ожидания нормального распределения, дисперсия которого известна, необходимо воспользоваться ?) таблицами плотности нормального распределения ?) таблицами распределения Пирсона () ?) таблицами распределения Стьюдента ?) таблицами нормального распределения Вопрос id:753678 Для человека, достигшего 20-летнего возраста, вероятность умереть на 21-м году жизни равна 0.01. Вероятность того, что из 200 застраховавшихся человек в возрасте 20-ти лет один умрет через год, равна ?) 0.256 ?) 0.271 ?) 0.246 ?) 0.297 Вопрос id:753679 Для человека, достигшего 60-летнего возраста, вероятность умереть на 61-м году жизни равна 0.09. Вероятность того, что из трех человек в возрасте 60 лет ни один не будет жив через год равна ?) 0.999886 ?) 0.000729 ?) 0.000713 ?) 0.999271 Вопрос id:753680 Для человека, достигшего 60-летнего возраста, вероятность умереть на 61-м году жизни равна 0.09. Вероятность того, что из трех человек в возрасте 60 лет хотя бы один умрет через год, равна ?) 0.8281 ?) 0.7536 ?) 0.2464 ?) 0.9100 Вопрос id:753681 Если в ящике в 5 раз больше красных шаров, чем черных, то вероятность p того, что вынутый наугад шар окажется красным, будет равна ?) 5/6 ?) 1/6 ?) 0.6 ?) 0.5 Вопрос id:753682 Если вероятность появлений события А в испытании равна p, то дисперсия числа появлений события А в одном испытании равна ?) 1-p ?) p(1-p) ?) p ?) 1/p Вопрос id:753683 Если вероятность появления события А в испытании равна 0.1, то среднеквадратическое отклонение числа появлений события А в одном испытании равно ?) 0.3 ?) 0.09 ?) 0.03 ?) 0.9 Вопрос id:753684 Если вероятность р некоторого события неизвестна, а для оценки этой вероятности производится n испытаний, то 95%-ый доверительный интервал для величины р находится по формуле ?) I0,95 (p)=, где ?) I0,95 (p)=, где ?) I0,95 (p)= ?) I0,95 (p)= Вопрос id:753686 Если выборочная средняя для выборка объема n: х1, х2, …, хn. равна , то статистический центральный момент k-го порядка находится по формуле ?) ?) ?) ?) Вопрос id:753687 Если дорогу на игру теннисисту перебежит черная кошка, то вероятность победы 0,2; если не перебежит, то - 0,7. Вероятность, что кошка перебежит дорогу - 0,1; что не перебежит - 0,9. Вероятность победы: ?) 0,1·0,2·0,9·0,7 ?) 0,9·0,2+0,1·0,7 ?) 0,1·0,2+0,9·0,7 ?) 0,1·0,8+0,9·0,3 Вопрос id:753688 Если имеется группа из n несовместных событий Hi, в сумме составляющих все пространство, и известны вероятности P(Hi), а событие A может наступить после реализации одного из Hi и известны вероятности P(A/Hi), то P(A) вычисляется по формуле ?) Бернулли ?) Муавра-Лапласа ?) Байеса ?) Полной вероятности Вопрос id:753689 Если каждый элемент выборки объема n: х1, х2, …, хn. увеличить в 5 раз, то выборочное среднее ?) возрастет в 5 раз, а выборочная дисперсия S2 увеличится в 25 раз ?) возрастет в 5 раз, а выборочная дисперсия не изменится ?) возрастет в 5 раз и выборочная дисперсия S2 возрастет в 5 раз ?) возрастет в 25 раз, а выборочная дисперсия S2 увеличится в 5 раз Вопрос id:753690 Если каждый элемент выборки объема n: х1, х2, …, хn. увеличить на 5 единиц, то ?) выборочное среднее увеличится на 5, а выборочная дисперсия S2 не изменится ?) выборочное среднее увеличится на 5, а выборочная дисперсия S2 увеличится тоже на 5 ?) выборочное среднее увеличится на 5, а выборочная дисперсия S2 увеличится на 25 ?) выборочное среднее не изменится, а выборочная дисперсия S2 увеличится на 5 Вопрос id:753691 Если случайная величина X распределена равномерно на отрезке [0, 1], случайная величина Y=X+2 будет иметь ?) Y уже не будет иметь равномерное распределение ?) равномерное распределение на отрезке [0,3] ?) равномерное распределение на отрезке [-2; -1] ?) равномерное распределение на отрезке [2,3] Вопрос id:753692 Если станок-автомат производит изделия трех сортов, причем, первого сорта - 80%, второго - 15%, то вероятность того, что наудачу взятое изделие будет или второго, или третьего сорта будет равна ?) 0.95 ?) 0.15 ?) 0.8 ?) 0.2 Вопрос id:753693 Застраховано 500 домов, причем вероятность того, что дом может сгореть в течение года, равна 0.01. Для расчета вероятности, что сгорит не более 5 домов. Надо воспользоваться следующим асимптотическим приближением ?) распределением Пуассона ?) надо сосчитать по формуле Бернулли, асимптотические формулы дадут большую ошибку ?) интегральной формулой Муавра-Лапласа ?) локальной формулой Муавра-Лапласа Вопрос id:753694 Из 1000 лотерейных билетов на 80 из них упал выигрыш по 1 руб., на 20 - по 5 руб., на 10 - по 10 руб. Закон распределения выигрыша описывает таблица ?) ?) ?) ?) Вопрос id:753695 Из генеральной совокупности, имеющей распределение N (20,4), производится выборка объема n=100, по которой строится выборочное среднее . Эта случайная величина имеет распределение ?) N (0,2;0,04) ?) N (0,2;0,4) ?) N (20;4) ?) N (20;0,4) Вопрос id:753696 Из нормального распределения с известной дисперсией s2 по выборке объема n строится доверительный интервал для математического ожидания. Если объем выборки увеличить в 25 раз, длина доверительного интервала ?) уменьшится в 25 раз ?) увеличится в 5 раз ?) уменьшится в 5 раз ?) увеличится в 25 раз Вопрос id:753697 Изделия изготавливаются независимо друг от друга. В среднем одно изделие из ста оказывается бракованным. Чему равна вероятность того, что из 200 взятых наугад изделий 2 окажутся неисправными? ?) 0.024 ?) 0.01 ?) 0.001 ?) 0.271 Вопрос id:753698 Имеется группа из n несовместных событий Hi, в сумме составляющих все пространство, и известны вероятности P(Hi), а событие A может наступить после реализации одного из Hi, и заданы вероятности P(A/Hi). Известно, событие A произошло. Вероятность, что при этом была реализована Hi вычисляется по формуле ?) Байеса ?) Полной вероятности ?) Муавра-Лапласа ?) Бернулли Вопрос id:753699 Исправленная дисперсия для выборки объема n=9 при выборочной дисперсии S2=3,86 равна ?) 4,45 ?) 4,50 ?) 4,34 ?) 4,20 Вопрос id:753700 Каждое сотое изделие, производимое предприятием, в среднем дефектное. Вероятность того, что два изделия, взятые наугад, окажутся исправными, равна ?) 0.213 ?) 0.001 ?) 0.01 ?) 0.9801 Вопрос id:753701 Количество поражений шахматиста в течение года имеет распределение Пуассона с параметром λ=6. Вероятность того, что шахматист в течение года проиграет не более двух партий равна ?) ?) ?) ?) Вопрос id:753702 Количество Х принимаемых по телефону за час звонков имеет распределение Пуассона. Среднее количество принимаемых за час звонков λ=5. Вероятность того, что за час будет принято точно 3 звонка равна ?) ?) ?) ?) Вопрос id:753703 Куплено 500 лотерейных билетов. На 40 из них упал выигрыш по 1 руб., на 10 - по 5 руб., на 5 - по 10 руб. Найдите средний выигрыш, приходящийся на один билет. ?) 0.28 ?) 1 ?) 2 ?) 0.35 Вопрос id:753704 Лампочки изготавливаются независимо друг от друга. В среднем одна лампочка из тысячи оказывается бракованной. Чему равна вероятность того, что из двух взятых наугад лампочек окажутся исправными обе? ?) 0.9 ?) 0.9999 ?) 0.998001 ?) 0.98 Вопрос id:753705 Математическое ожидание и дисперсия случайной величины, распределенной «нормально с параметрами 3,2» (N[3,2]), равны ?) MX = 9; DX = 2 ?) MX = 3; DX = 4 ?) MX = 3; DX = 1 ?) MX = 0; DX = 2 Вопрос id:753706 Математическое ожидание случайной величины, равномерно распределенной на отрезке [0, 2], равно ?) 2 ?) 0,5 ?) 0 ?) 1 Вопрос id:753707 На некоторой фабрике машина А производит 40% продукции, а машина B - 60%. В среднем 9 из 1000 единиц продукции, произведенных машиной А, и 1 из 250, произведенных машиной B, оказываются бракованными. Какова вероятность, что случайно выбранная единица продукции окажется бракованной? ?) 0.008 ?) 0.5 ?) 0.006 ?) 0.007 Вопрос id:753708 На некотором заводе было замечено, что при определенных условиях в среднем 1.6% изготовленных изделий оказываются неудовлетворяющими стандарту и идут в брак. Равной чему можно принять вероятность того, что наугад взятое изделие этого завода окажется качественным? Сколько примерно непригодных изделий (назовем это число M) будет в партии из 1000 изделий? ?) p = 0.984; M = 16 ?) p = 0.016; M = 160 ?) р = 1.6; M = 16 ?) p = 0.16; M = 16 Вопрос id:753709 На отрезке длиной 20 см помещен меньший отрезок L длиной 10 см. Найти вероятность того, что точка, наудачу поставленная на большой отрезок, попадет также и на меньший отрезок. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения. ?) 0.1 ?) 1/4 ?) 0.2 ?) 0.5 Вопрос id:753710 Найдите M(2X - 3Y) при MX = 5, MY = 2, используя свойства математического ожидания ?) 5 ?) 2 ?) 4 ?) 3 Вопрос id:753711 Найдите D(2X+3Y), если X и Y - независимы и DX = 5, DY = 2, используя свойства дисперсии ?) 16 ?) 38 ?) 30 ?) 26 Вопрос id:753712 Найдите D(2X+5), если X = 1.5, используя свойства дисперсии ?) 3 ?) 11 ?) 8 ?) 6 Вопрос id:753713 Найдите M(2X+5) при X = 1.5, используя свойства математического ожидания ?) 8 ?) 6.5 ?) 5 ?) 3 Вопрос id:753714 Найдите MX, если случайная величина X принимает значения 7, -2, 1, -5, 3 с равными вероятностями ?) 0 ?) 0.7 ?) 0.8 ?) 0.9 Вопрос id:753715 Недостающая цифра в таблице статистического распределения, построенного по выборке, равна ?) х = 4 ?) х = 3 ?) х = 2 ?) х = 5 Вопрос id:753716 Недостающее число в таблице статистического распределения, построенного по выборке, равно ?) х = 0,4 ?) х = 0,5 ?) х = 0,3 ?) х = 0,2 Вопрос id:753717 Независимыми называются события при: ?) р(AB)=р(A)р(B) ?) р(AB)=р(B)/р(A) ?) р(AB)=р(A)+р(B) ?) р(AB)=р(A)/р(B) Вопрос id:753718 Несовместными называются события A и B если: ?) р(AB)=1 ?) р(AB)=0 ?) р(AB)=р(A)р(B) ?) р(AB)=р(A)+р(B) Вопрос id:753719 По выборке объема n= 10 нужно построить доверительный интервал для математического ожидания нормального распределения, дисперсия которого неизвестна. Для этого нужны таблицы ?) плотности нормального распределения. ?) нормального распределения. ?) распределения Пирсона () ?) распределения Стьюдента. Вопрос id:753720 По выборке, в которой самое маленькое значение - 0, самое большое- 8, медиана -2, построена гистограмма ?) ?) ?) ?) Вопрос id:753721 По заданной таблице распределения случайной величины р(X < 3) равно ?) 1/2 ?) 3/8 ?) 5/8 ?) 3/4 Вопрос id:753722 По результатам выборочного обследования доходов жителей оказалось, что половина жителей имеет доходы от 0 до 400 рублей, а половина - от 400 до 2000 рублей. Гистограмма, построенная по этим данным, имеет вид ?) ?) ?) ?) Вопрос id:753723 Преподаватель вызывает студента из группы, в которой 25 человек. Из них: отлично учится 5 человек, хорошо - 12, удовлетворительно - 6 и слабо - 2. Вероятность того, что вызванный студент или отличник или хорошист равна ?) 8/25 ?) 0.85 ?) 17/25 ?) 0.5 Вопрос id:753724 При бросании двух монет вероятность того, что выпадут и герб, и решка, равна ?) 1/4 ?) 0.5 ?) 1/3 ?) 0.3 Вопрос id:753725 При игре в кости игрок делает 120 ставок, вероятность выиграть равна 1/6. Для расчета вероятности, что число выигрышей не будет меньше 15, надо воспользоваться асимптотическим приближением ?) локальной формулой Муавра-Лапласа ?) распределением Пуассона ?) интегральной формулой Муавра-Лапласа ?) надо сосчитать по формуле Бернули Вопрос id:753726 При изготовлении детали заготовка должна пройти четыре операции. Полагая появление брака на отдельных операциях событиями независимыми, найти (с точностью до 4-х знаков после запятой) вероятность изготовления нестандартной детали, если вероятность брака на первой стадии операции равна 0.02, на второй - 0.01, на третьей - 0.02, на четвертой - 0.03. ?) 0.0800 ?) 0.9222 ?) 0.9200 ?) 0.0777 Вопрос id:753727 При страховании 1600 автомобилей вероятность того, что автомобиль может попасть в аварию, равна 0.2. Для расчета вероятности, что число аварий не превысит 350, нужно воспользоваться следующим асимптотическим приближением: ?) распределением Пуассона ?) надо сосчитать по формуле Бернулли, асимптотические формулы дадут большую ошибку ?) интегральной формулой Муавра-Лапласа ?) локальной формулой Муавра-Лапласа |
Copyright testserver.pro 2013-2024