Тесты онлайн, бесплатный конструктор тестов. Психологические тестирования, тесты на проверку знаний.

Список вопросов базы знаний

Уравнения математической физики (курс 2)

Вопрос id:735721
Волновое уравнение описывающее колебания струны под действием внешних сил; U = U(x, t) - отклонение точки х струны от положения равновесия в момент времени t, а - физическая постоянная, функция f(x, t) зависит от внешней силы - это
?) Уравнение Штурма-Лиувилля
?) Уравнения Бесселя
?) Уравнение вынужденных колебаний
?) Уравнение Пуассона
Вопрос id:735722
Граничные условия второго рода для уравнения теплопроводности
?) определяют тепловой поток на концах стержня
?) соответствуют случаю, когда через концы стержня происходит теплообмен с окружающей средой по закону Ньютона
?) означают, что на концах стержня задана температура
?) означают, что на концах стержня заданы режимы колебаний
Вопрос id:735723
Граничные условия первого рода для уравнения теплопроводности
?) означают, что на концах стержня задана температура
?) определяют тепловой поток на концах стержня
?) означают, что на концах стержня заданы режимы колебаний
?) соответствуют случаю, когда через концы стержня происходит теплообмен с окружающей средой по закону Ньютона
Вопрос id:735724
Граничные условия третьего рода для уравнения теплопроводности
?) соответствуют случаю, когда через концы стержня происходит теплообмен с окружающей средой по закону Ньютона
?) определяют тепловой поток на концах стержня
?) означают, что на концах стержня задана температура
?) означают, что на концах стержня заданы режимы колебаний
Вопрос id:735725
Дополнительные условия, которым должно удовлетворять решение нестационарного уравнения в начальный момент времени, называются
?) неоднородными
?) конечными
?) начальными
?) однородными
Вопрос id:735726
Задача об отыскании решения уравнения Лапласа, рассматриваемого во внешности ограниченной области, удовлетворяющего условию Дирихле на границе и условию на бесконечности: на плоскости - ограниченно решение, в пространстве - равномерное стремление решения к нулю - это
?) задача Коши для обыкновенного дифференциального уравнения порядка n
?) задача Коши для уравнения теплопроводности
?) задача Штурма-Лиувилля
?) внешняя задача Дирихле
Вопрос id:735727
Краевая задача DU = 0, = g(S), S ⊂ Г называется
?) задачей Дирихле
?) задачей Штурма-Лиувилля
?) задачей Неймана
?) третьей краевой задачей
Вопрос id:735728
Краевая задача DU = 0, + h(- g(S)) = 0, S ⊂ Г называется
?) третьей краевой задачей
?) задачей Дирихле
?) задачей Неймана
?) задачей Штурма-Лиувилля
Вопрос id:735729
Краевая задача DU = 0, = g(S), S ⊂ Г называется
?) третьей краевой задачей
?) задачей Дирихле
?) задачей Неймана
?) задачей Штурма-Лиувилля
Вопрос id:735730
Краевая задача для однородного дифференциального уравнения с однородными граничными условиями называется
?) неоднородной
?) ортогональной
?) конечной
?) однородной
Вопрос id:735731
Определитель Вронского двух собственных функций задачи Штурма-Лиувилля на концах отрезка [a, b] равен
?) 1
?) ε
?) -1
?) 0
Вопрос id:735732
Первая краевая задача для волнового уравнения в одномерном случае имеет вид
?) Utt = a2 (Uxх + Uуу), = j(x, y), = Y(x, y), = g(S, t), S ⊂ Г
?) Utt = a2 Uxх, = j(x), = Y(x), = g1(t), = g2(t)
?) Ut = a2 (Uxх + Uуу + Uzz), = j(x, у, z), = g(S, t), S ⊂ W
?) Ut = a2(Uxх + Uуу + Uzz), = j(x, у, z), = Y(x, у, z), = g(S, t), S ⊂ W
Вопрос id:735733
Первая краевая задача для волнового уравнения на плоскости имеет вид
?) Ut = a2 (Uxх + Uуу + Uzz), = j(x, у, z), = g(S, t), S ⊂ W
?) Ut = a2(Uxх + Uуу + Uzz), = j(x, у, z), = Y(x, у, z), = g(S, t), S ⊂ W
?) Utt = a2 (Uxх + Uуу), = j(x, y), = Y(x, y), = g(S, t), S ⊂ Г
?) Utt = a2 Uxх, = j(x), = Y(x), = g1(t), = g2(t)
Вопрос id:735734
Процесс диффузии описывается уравнением ___ типа
?) интегрального
?) гиперболического
?) параболического
?) эллиптического
Вопрос id:735735
Решение задачи y'' +у = 0, у (0) = y'() = 0 имеет вид
?)
?)
?)
?)
Вопрос id:735736
Решение краевой задачи для обыкновенного дифференциального уравнения y” + ly = 0 при l = 1, y(0) = 0, y’(p) = 1 - это
?) y = cosx
?) y = - sinx
?) y = sinx
?) y = - cosx
Вопрос id:735737
у'(а) = у'(b) = 0 - это краевые условия ___ рода задачи Штурма-Лиувилля
?) четвертого
?) второго
?) третьего
?) первого
Вопрос id:735738
у(а) = у(b) = 0 - это краевые условия ___ рода задачи Штурма-Лиувилля
?) второго
?) четвертого
?) третьего
?) первого
Вопрос id:735739
Уравнение является:
?) уравнением свободных колебаний струны
?) уравнением теплопроводности
?) уравнением вынужденных колебаний струны
?) уравнением диффузии
Вопрос id:735740
Уравнение Ut = а2(Uхх + Uуу) является:
?) уравнением теплопроводности в плоскости
?) многомерным уравнением теплопроводности
?) одномерным уравнением теплопроводности
?) уравнением теплопроводности в пространстве
Вопрос id:735741
Уравнение вида с параметрами l и n - это
?) Уравнение Пуассона
?) Уравнение вынужденных колебаний
?) Уравнение Штурма-Лиувилля
?) Уравнения Бесселя
Вопрос id:735742
Уравнение вынужденных колебаний Utt = a2 Uxх + f(x, t), где f(x, t) = является
?) неоднородным эллиптическим уравнением
?) однородным эллиптическим уравнением
?) однородным волновым уравнением
?) неоднородным волновым уравнением
Вопрос id:735744
Функция у = cosх является собственной функцией задачи Штурма-Лиувилля у'' + lу = 0, у'(0) = у'(3p) = 0 с собственным значением
?) l = -
?) l =
?) l =
?) l = -
Вопрос id:735745
Функция у = sinpх является собственной функцией задачи Штурма-Лиувилля у'' + lу = 0, у(0) = у'() = 0 с собственным значением
?) l = -1
?) l = p
?) l = p2
?) l = 1
Вопрос id:735746
Функция у = sinх является собственной функцией задачи Штурма-Лиувилля у'' + lу = 0, у(0) = у(3p) = 0 с собственным значением
?) l = -
?) l = -
?) l =
?) l =
Вопрос id:735747

Верны ли утверждения?

А) Уравнение (Uxx)2 - (Uyy)2 + Uzz = 0 имеет второй порядок

В) Уравнение х2 (Ux) – у2 (Uy) - z3(Uz) = 0 имеет второй порядок

Подберите правильный ответ

?) А – нет, В – да
?) А – да, В – нет
?) А – да, В – да
?) А – нет, В – нет
Вопрос id:735748

Верны ли утверждения?

А) Уравнение Uxx + х2Uy + zU = 0 имеет первый порядок

В) Уравнение y2Ux + xUy + (zUz)2 = 0 имеет первый порядок

Подберите правильный ответ

?) А – нет, В – да
?) А – нет, В – нет
?) А – да, В – нет
?) А – да, В – да
Вопрос id:735749

Верны ли утверждения?

А) Уравнение x2(Ux)2 - z2(Uy)2 + y2(Uz)2 = 0 линейное однородное

В) Уравнение y2Uxy - x2Uzx + z2Uzy = 0 линейное

Подберите правильный ответ

?) А – нет, В – нет
?) А – да, В – да
?) А – да, В – нет
?) А – нет, В – да
Вопрос id:735750

Верны ли утверждения?

А) Уравнение xUxy – xyUz + xyzU = 0 имеет первый порядок

В) Уравнение (Uyy)2 – xUx + U2 = 0 имеет второй порядок

Подберите правильный ответ

?) А – нет, В – нет
?) А – да, В – да
?) А – да, В – нет
?) А – нет, В – да
Вопрос id:735751

Верны ли утверждения?

А) Уравнение y(Ux)2 + (Uy)2 – z(Uz)2 = 0 имеет второй порядок

В) Уравнение у3(Uxy) + х3(Uyz) - z3(Uzz) = 0 имеет первый порядок

Подберите правильный ответ

?) А – нет, В – да
?) А – нет, В – нет
?) А – да, В – да
?) А – да, В – нет
Вопрос id:735752

Верны ли утверждения?

А) Уравнение yUxx + xUyy – z2Uzz = 0 имеет второй порядок

В) Уравнение y2Uxy – x2Uzx + z2 Uzy = 0 имеет второй порядок

Подберите правильный ответ

?) А – да, В – нет
?) А – нет, В – нет
?) А – да, В – да
?) А – нет, В – да
Вопрос id:735753

Верны ли утверждения?

А) Уравнение z2(Uxx)2 + x2(Uyy)2 - y2(Uzz)2 = 0 линейное второго порядка

В) Уравнение Uxx + x2Uy + zU = 0 линейное второго порядка

Подберите правильный ответ

?) А – нет, В – да
?) А – нет, В – нет
?) А – да, В – да
?) А – да, В – нет
Вопрос id:735754

Верны ли утверждения?

А) Уравнение х2(Ux)2 – z2(Uy)2 + y2(Uz)2 = 0 имеет второй порядок

В) Уравнение (Uxx)2 + х2(Uyy)2 - y2(Uzz)2 = 0 имеет второй порядок

Подберите правильный ответ

?) А – нет, В – да
?) А – да, В – нет
?) А – нет, В – нет
?) А – да, В – да
Вопрос id:735755

Общее решение уравнения aUt + bUx = 0 записывается в виде U(x,t) = C(ax-bt), где С(u) – произвольная дифференцируемая по u функция.

Тогда общее решение уравнения Ut - 2Ux = 0 записывается в виде

?) U(x,t) = C(2x-t)
?) U(x,t) = C1(x-2t) + C2(x+2t)
?) U(x,t) = C(x+2t)
?) U(x,t) = C(x-2t)
Вопрос id:735756

Уравнения характеристик для дифференциального уравнения

3ut + 4ux = 0 имеют вид

?) = ; =
?) = 3; = 4
?) = 4; = 3
?) = 3; = -4
Вопрос id:735757

Уравнения характеристик для дифференциального уравнения

4ut - 3ux = 0 имеют вид

?) = ; = -
?) = 4; = -3
?) = ; =
?) = 4; = 3
Вопрос id:735758

Уравнения характеристик для дифференциального уравнения

5ut - ux = 0 имеют вид

?) = 1; =
?) = 5; = -1
?) = -1; = 5
?) = -1; =
Вопрос id:735759

Уравнения характеристик для дифференциального уравнения

tut + xux + u = 0 имеют вид

?) = u; = -u
?) = t; = -x
?) = t; = x
?) = x; = t
Вопрос id:735760

Уравнения характеристик для дифференциального уравнения

ut + 4ux = 0 имеют вид

?) = 4; = 1
?) = 4; = 1
?) = 1; = 4
?) = 1; = 4
Вопрос id:735761

Уравнения характеристик для дифференциального уравнения

имеют вид

?) = - x2; = 5
?) = - x2; = x - t
?) = x - t; = x2
?) = x - t; = -x2
Вопрос id:735762

Уравнения характеристик для дифференциального уравнения

имеют вид

?) = x2; =
?) = ; = t
?) = - t; =
?) = ; = x2
Вопрос id:735763

Функция f(x) = x разлагается в ряд Фурье + + на отрезке

[- 3, 3]. Коэффициент a0 равен

?) -1
?)
?) 0
?) 1
Вопрос id:735764

Функция f(x) = x разлагается в ряд Фурье + на отрезке [0, 2].

Коэффициент a0 равен

?) 2
?) -1
?) 0
?) 1
Вопрос id:735765
Xарактеристики уравнения ut + 4ux = 0 имеют вид
?) t = 4s + C1, x = 4s + C2
?) t = s + C1, x = 4s + C2
?) t = s + C1, x = -4s + C2
?) t = s + C1, x = s + C2
Вопрос id:735766
Волновое уравнение (одномерное) имеет вид
?) Utt = a2(Uxx -Uyy + Uzz)
?) Ut = a2(Uxx +Uyy + Uzz)
?) U = a2(Uxx + Uyy)
?) Utt = a2Uxx
Вопрос id:735767
Волновое уравнение на плоскости имеет вид
?) Utt + a2Uxx = 0
?) Utt = a2(Uxx + Uyy)
?) Utt + Uxx = Uy
?) Ut = a2(Uxx + Uyy)
Вопрос id:735768
Дифференциальное уравнение называется линейным, если
?) все неизвестные функции и их производные входят в уравнение в первой степени
?) все неизвестные функции входят в уравнение в первой степени
?) все независимые переменные входят в уравнение в первой степени
?) все переменные входят в уравнение в первой степени
Вопрос id:735769
Область, в которой уравнение (y2 + 1)Uxx + xUxy + Uyy = 0 имеет эллиптический тип, находится
?) вне гиперболы
?) вне гиперболы
?) внутри гиперболы
?) внутри гиперболы
Вопрос id:735770
Область, в которой уравнение (y2 - 1)Uxx - 2xUxy + Uyy = 0 имеет эллиптический тип, находится
?) внутри гиперболы –х2 + у2 = 1
?) вне гиперболы х2 - у2 = 1
?) вне гиперболы –х2 + у2 = 1
?) внутри гиперболы х2 - у2 = 1
Вопрос id:735771
Область, в которой уравнение Uxx – 4хUxy + (4 – у2)Uyy = 0 имеет гиперболический тип, находится
?) внутри эллипса х2 + = 1
?) внутри эллипса = 1
?) вне эллипса х2 + = 1
?) вне эллипса = 1
Copyright testserver.pro 2013-2024