Тесты онлайн, бесплатный конструктор тестов. Психологические тестирования, тесты на проверку знаний.

Список вопросов базы знаний

Методы оптимизации (курс 1)

Вопрос id:884322
Минимальное значение функции y=0.5x2 - 3x - 1 на отрезке [0,1] достигается в точке
?) 1
?) 1/3
?) 1/2
?) 0
Вопрос id:884323
Минимальное значение функции y=x2 - 2x + 1 на отрезке [0,1] равно
?) 1
?) 0.5
?) 0.25
?) 0
Вопрос id:884324
Минимальное значение функции y=x2 - 2x - 1 на отрезке [0,1] достигается в точке
?) 0
?) 1/3
?) 1
?) 1/2
Вопрос id:884325
Минимальное значение функции y=x2 - x + 1 на отрезке [0,1] равно
?) 0.75
?) 0.5
?) 1
?) 0.25
Вопрос id:884326
Минимальное значение функции y=x2 - x - 1 на отрезке [0,1] достигается в точке
?) 1
?) 1/2
?) 1/3
?) 0
Вопрос id:884327
Наиболее распространенные методы оптимизации используют понятие
?) функциональной экстремали
?) минимума (или максимум функции или функционала
?) системного подхода
?) среднеквадратичного критерия оптимизации
Вопрос id:884328
Не очень строго функционал можно определить как
?) вариацию некоторой функции
?) корень алгебраического уравнения
?) производную некоторой функции
?) функцию от функции
Вопрос id:884329
Необходимость требования, чтобы переходный процесс заканчивался в минимальное время, заключается в том, что до окончания переходного процесса система
?) не может выполнить своего основного назначения
?) не реагирует на сигналы-корреляторы
?) накапливает ошибку рассогласования
?) обладает максимальной степенью неопределенности
Вопрос id:884330
Необходимым условием существования локального экстремума функции одной переменной является
?) обращение функции в ноль
?) ограниченность функции
?) обращение в ноль ее второй производной
?) обращение в ноль ее первой производной
Вопрос id:884331
Неприменимость классических методов вариационного исчисления к некоторым типам разрывных и ступенчатых функций привело к необходимости разработки методов оптимизации типа методов
?) Эйлера, Лагранжа
?) Больцано, Коши
?) Стильтьеса, Кауфмана
?) Беллмана, Понтрягина
Вопрос id:884332
Общий вид уравнения Эйлера следующий
?)
?)
?)
?)
Вопрос id:884333
Одна из основных задач автоматизированных информационных систем (АИуправления - оперативно-календарное планирование, относится к задачам
?) теории принятия решений
?) целочисленного программирования
?) классического вариационного исчисления
?) теории игр
Вопрос id:884334
Одним из вариантов записи уравнения Эйлера может быть следующий
?)
?)
?)
?)
Вопрос id:884335
Оптимальная система управления может быть реализована в виде
?) системы оптимальных критериев
?) стратегии или способа управления объектом
?) системы оптимизационных сигналов
?) стохастического регулирующего механизма
Вопрос id:884336
Оптимизация - это
?) процесс нахождения наилучшего решения задачи по некоторому критерию
?) свойство сложных систем управления
?) определение целевого функционала
?) выбор некоторого критерия оптимизации из нескольких возможных
Вопрос id:884337
Переходный процесс в теории регулирования - это
?) процесс возвращения системы к исходному состоянию, после окончания действия возмущения
?) переходы системы из одного состояния в другое под действием случайных факторов
?) процесс перехода системы в новое качественное состояние
?) процесс раздвоения фазовой траектории
Вопрос id:884338
Постановка задачи оптимизации предполагает наличие
?) объекта оптимизации и цели оптимизации
?) системы оптимальных процедур
?) оптимизирующей процедуры
?) метода расчета критерия оптимизации
Вопрос id:884339
Прагматические критерии оптимизации - это
?) выработанные практикой количественные характеристики оптимальности некоторой системы
?) специальные критерии, используемые при расчетах строительных конструкций
?) критерии, полученные на основе математических расчетов
?) критерии, получаемые на основе решения уравнения Эйлера
Вопрос id:884340
Примером критерия среднего квадрата ошибки является
?) коэффициент корреляции между опорным и выходным сигналами
?) величина дисперсии разности опорного и выходного сигналов системы
?) величина дисперсии выходного сигнала
?) величина выходного сигнала системы
Вопрос id:884341
Примером функционала может служить выражение
?)
?)
?)
?)
Вопрос id:884342
Примером функционала может является
?) определенный интеграл от функции
?) дифференциал
?) вариация
?) множество
Вопрос id:884343
Примером функционала может являться
?) дифференциал функции
?) алгебраическое уравнение
?) вариация функции
?) сопоставление каждой функции ее максимального значения на отрезке
Вопрос id:884344
Принцип Гамильтона в классической механике формулируется так
?) система движется между двумя точками в фазовом пространстве по такой траектории, для которой некоторый интегральный функционал, называемый действием, сохраняет постоянное значение
?) система движется между двумя точками в фазовом пространстве по кратчайшей траектории
?) система движется между двумя точками в фазовом пространстве по такой траектории, для которой некоторый интегральный функционал, называемый действием, обращается в минимум
?) система движется между двумя точками в фазовом пространстве так, чтобы время движения было минимальным
Вопрос id:884345
Принцип Гамильтона в механике формулируется следующим образом: фазовая траектория системы
?) является экстремалью функционала
?) носит колебательный характер
?) замкнута
?) ограничена
Вопрос id:884346
Принцип оптимальности Беллмана можно сформулировать так:
?) оптимальная траектория состоит из частей-траекторий, каждая из которых не является оптимальной
?) оптимальная траектория состоит из частей-траекторий, начальная и конечная из которых оптимизируется собственным функционалом для соответствующей конечной и начальной точки
?) оптимальная траектория является единой траекторией, оптимизируемой соответствующим функционалом
?) оптимальная траектория состоит из частей-траекторий, каждая из которых оптимизируется собственным функционалом для соответствующей конечной и начальной точки
Вопрос id:884347
Принцип оптимальности Беллмана является основой программирования
?) логического
?) сепарабельного
?) динамического
?) линейного
Вопрос id:884348
Принцип оптимальности динамического программирования утверждает, что
?) на оптимальной траектории оптимальны 1-й и последний участки
?) на оптимальной траектории все участки оптимальны
?) если вся траектория оптимальна, то последний участок тоже оптимален
?) если оптимальны 1-й и 2-й участки, то вся траектория оптимальна
Вопрос id:884349
Принцип оптимальности справедлив для процессов управления
?) дискретных, и непрерывных
?) только дискретных
?) только непрерывных
?) только стохастических
Вопрос id:884350
Принципу оптимальности Беллмана не соответствует формулировка
?) оптимальное управление в любой момент времени не зависит от предыстории системы
?) оптимальное управление в любой момент времени будет зависеть от того, как система управлялась, до данного момента
?) начиная с любого промежуточного момента времени, участок оптимальной траектории также оптимален
?) если управление оптимально, то каково бы не было начальное состояние системы и управление в начальный момент, последующее управление оптимально относительно состояния на данный момент
Вопрос id:884351
Приращением или вариацией dy аргумента y(x) функционала J(y(x)) называется
?) произведение двух функций dy=y(x) и y0(x)
?) сумма двух функций dy=y(x) + y0(x)
?) разность между двумя функциями dy=y(x) - y0(x)
?) частное двух функций dy=y(x) и y0(x)
Вопрос id:884352
Пусть задан функционал I(y(x)+eh(x)) (e-число), тогда 1-й вариацией функционала является выражение
?)
?)
?)
?)
Вопрос id:884353
Пусть задан функционал I(y(x)+eh(x)) (e-число), тогда 2-й вариацией функционала является выражение
?)
?)
?)
?)
Вопрос id:884354
С геометрической точки зрения вариационная задача с подвижными концами состоит в определении кривой
?) концы которой расположены на вертикальных прямых х=а и х=b
?) концы которой расположены на горизонтальных прямых y=а и y=b
?) имеющей конечное число точек разрыва
?) концы которой проходят через заданные точки
Вопрос id:884355
С геометрической точки зрения особенностью вариационных задач с подвижными границами является то, что область определения допустимых функций
?) не фиксирована, а меняется от функции к функции
?) ограничена отрицательными значениями х
?) ограничена положительными значениями х
?) фиксирована
Вопрос id:884356
Среди следующих утверждений верным является утверждение, что
?) функция, непрерывная в замкнутом интервале и принимающая на его концах значения разных знаков, по меньшей мере, один раз обращается в ноль внутри интервала
?) у функции, непрерывной в замкнутом интервале и принимающей на концах значения разных знаков, 2-я производная, по меньшей мере, один раз обращается в ноль внутри интервала
?) функция, непрерывная в замкнутом интервале и принимающая на его концах значения разных знаков, по меньшей мере, два раза обращается в ноль внутри интервала
?) у функции, непрерывной в замкнутом интервале и принимающей на концах значения разных знаков, 1-я производная, по меньшей мере, один раз обращается в ноль внутри интервала
Вопрос id:884357
Стоимость функционирования системы массового обслуживания в единицу времени можно определить как
?) C = c1pcp + c2wcp ,
?) C = c1pcp - c2wcp ,
?) C = c1 + c2 ,
?) C = pcp + wcp ,
Вопрос id:884358
Точкой бесконечного разрыва функции называется точка, в которой
?) 1-я производная стремится к бесконечности
?) функция при подходе к точке разрыва стремятся к бесконечности
?) функция имеет правый и левый пределы не равные между собой
?) 2-я производная стремится к бесконечности
Вопрос id:884359
Точкой разрыва функции 1-го рода называется точка, в которой функция имеет
?) правый и левый пределы не равные между собой
?) правый и левый пределы равные между собой
?) разрыв 1-й производной
?) разрыв 2-й производной
Вопрос id:884360
Точкой устранимого разрыва функции называется точка, в которой функция имеет
?) правый и левый пределы равные между собой
?) разрыв 1-й производной
?) правый и левый пределы не равные между собой
?) разрыв 2-й производной
Вопрос id:884361
Уравнение Эйлера для функционала имеет вид
?)
?)
?)
?)
Вопрос id:884362
Уравнение Эйлера служит для нахождения экстремума функционала вида
?)
?)
?)
?)
Вопрос id:884363
Уравнения Гамильтона для функционала являются другой формой записи
?) дополнительных ограничений на функцию
?) уравнения Эйлера
?) условий трансверсальности
?) дополнительных ограничений на функцию и ее производную
Вопрос id:884364
Уравнения Гамильтона представляют собой систему
?) двух дифференциальных уравнений 2-го порядка
?) двух дифференциальных уравнений 1-го порядка
?) двух алгебраических уравнений
?) трех дифференциальных уравнений 1-го порядка
Вопрос id:884365
Условие Лежандра позволяет
?) находить экстремаль вырожденного функционала
?) отличать минимум от максимума
?) определять знак первой вариации
?) определять знаки второй производной
Вопрос id:884366
Условия трансверсальности возникают в вариационной задаче, когда
?) концы искомой функции могут перемещаться по заданным кривым
?) концы искомой функции свободны
?) концы искомой функции неподвижно закреплены
?) функция имеет разрыв первого рода
Вопрос id:884367
Функционал J(y(x)) называется непрерывным, если малому изменению
?) y(x) соответствует малое изменение J(y(x))
?) y’(x) соответствует малое изменение J(y(x))
?) x соответствует малое изменение J(y(x))
?) y’’(x) соответствует малое изменение J(y(x))
Вопрос id:884368
Функционал J(y) называется линейным, если для любых чисел a1 и a2 выполняется условие:
?) J[a1y1 + a2y2]= (a1 + a2 )J[y1 + y2]
?) J[a1y1 + a2y2]= a1J[y1] + a2J[y2]
?) J[a1y1 + a2y2]= a1a2J[y1 + y2]
?) J[a1y1 + a2y2]= a1J[y1] x a2J[y2]
Вопрос id:884369
Функциональное уравнение Беллмана представляет собой
?) подкласс уравнения Эйлера
?) подкласс обобщенного уравнения Лежандра
?) гамильтониан
?) формальную запись принципа оптимальности
Вопрос id:884370
Функция имеет в нуле точку
?) непрерывности функции
?) бесконечного разрыва
?) разрыва 1-го рода
?) устранимого разрыва
Вопрос id:884371
Функция f(x) имеет на отрезке [a,b] глобальный минимум в точке x*, если
?) f(x*)=0
?) f(x) ограничена на [a,b]
?) для всех xÎ[a,b] f(x*)³f(x)
?) для всех xÎ[a,b] f(x*)£f(x)
Copyright testserver.pro 2013-2024