Тесты онлайн, бесплатный конструктор тестов. Психологические тестирования, тесты на проверку знаний.
Список вопросов базы знанийМатематический анализ (курс 4)Вопрос id:784509 Стационарные точки функции ?) , ?) , ?) , ?) , Вопрос id:784514 Стационарные точки функции ?) не существуют ?) (1,2,-6) ?) (-1,-1,-1) ?) (0,0,0) Вопрос id:784515 Стационарные точки функции ?) не существуют ?) (-1,0) ?) (-2,0) ?) (0,0) Вопрос id:784517 Стационарными точками функции будут ?) (1,0) ?) не существует ?) (0,0) ?) (0,1) Вопрос id:784518 Стационарными точками функции будут ?) (1,-1) ?) (1,1) ?) (-1,-1) ?) (0,0) Вопрос id:784519 Стационарными точками функции будут ?) (1,-1) ?) ?) (2,-1) ?) (0,0) Вопрос id:784520 Степенным называют ряд вида ?) ?) ?) ?) Вопрос id:784523 Сходится ряд ?) ?) ?) ?) Вопрос id:784534 Сходящимся является знакочередующийся ряд ?) ?) ?) ?) Вопрос id:784539 Теорема Абеля показывает, что для ряда все точки сходимости расположены ?) на всей числовой оси ?) ближе к началу координат, чем точки расходимости ?) на положительной части числовой оси ?) дальше от начала координат, чем точки расходимости Вопрос id:784540 Теорема существования и единственности решения задачи Коши для дифференциального уравнения выполнена в области ?) ?) ?) ?) Вопрос id:784547 Теорема существования и единственности решения задачи Коши для дифференциального уравнения выполнена в области ?) {, } ?) ?) ?) Вопрос id:784553 Теорема существования и единственности решения задачи Коши для дифференциального уравнения выполнена в области ?) ?) ?) ?) вся плоскость Вопрос id:784556 Точка является внутренней точкой множества на плоскости , если она ?) лежит внутри ?) принадлежит ?) содержится в вместе с некоторой своей -окрестностью ?) содержится в вместе с некоторым интервалом Вопрос id:784565 Точка является граничной точкой множества , если ?) в некоторой -окрестности есть точки из и точки, не принадлежащие ?) лежит на границе ?) не принадлежит ?) в любой -окрестности находятся как точки из , так и точки, не принадлежащие Вопрос id:784574 Точка является точкой максимума функции , если ?) найдется такая -окрестность , что значение больше любого значения , принятого в этой окрестности ?) значение больше всех значений функции ?) ?) найдется такой интервал, содержащий , что значение больше любого значения , принятого в этом интервале Вопрос id:784585 Точки перегиба функции ?) ?) ?) ?) Вопрос id:784589 Третий член ряда равен ?) ?) ?) ?) Вопрос id:784599 Угол между осью и касательной к графику функции в точке ?) ?) ?) ?) Вопрос id:784609 Уравнение является дифференциальным уравнением ?) линейным первого порядка ?) Бернулли ?) с разделяющимися переменными ?) с разделенными переменными Вопрос id:784610 Уравнение является дифференциальным уравнением ?) с разделенными переменными ?) линейным первого порядка ?) Бернулли ?) с разделяющимися переменными Вопрос id:784611 Уравнение является дифференциальным уравнением ?) Бернулли ?) с разделяющимися переменными ?) линейным первого порядка ?) с разделенными переменными Вопрос id:784612 Уравнение является дифференциальным уравнением ?) с разделенными переменными ?) Бернулли ?) с разделяющимися переменными ?) линейным первого порядка Вопрос id:784613 Уравнение вертикальной асимптоты для графика функции имеет вид ?) и ?) ?) ?) Вопрос id:784628 Уравнение касательной к графику функции в точке М(1;0) имеет вид ?) ?) ?) у = - 2х + 2 ?) Вопрос id:784634 Уравнение касательной к графику функции в точке М(2;8) имеет вид ?) ?) ?) у = 12х - 16 ?) Вопрос id:784639 Уравнение касательной к графику функции в точке М(-1;2) имеет вид ?) ?) ?) ?) Вопрос id:784643 Уравнение касательной к графику функции в точке М(1;3) имеет вид ?) ?) у = 4х - 1 ?) ?) Вопрос id:784646 Уравнение касательной к графику функции в точке имеет вид ?) ?) ?) ?) Вопрос id:784648 Уравнение невертикальной асимптоты для графика функции имеет вид ?) ?) ?) ?) нет невертикальной асимптоты Вопрос id:784651 Уравнение невертикальной асимптоты для графика функции имеет вид ?) ?) ?) ?) Вопрос id:784654 Уравнение нормали к графику функции в точке имеет вид ?) ?) ?) ?) Вопрос id:784661 Уравнением Бернулли будет дифференциальное уравнение ?) ?) ?) ?) Вопрос id:784667 Уравнением Бернулли называют дифференциальное уравнение ?) ?) ?) ?) Вопрос id:784673 Уравнением с разделяющимися переменными это уравнение ?) ?) ?) ?) Вопрос id:784680 Уравнением с разделяющимися переменными является следующее уравнение ?) ?) ?) ?) Вопрос id:784687 Уравнением с разделяющимися переменными является уравнение ?) ?) ?) ?) Вопрос id:784694 Уравнением, разрешенным относительно первой производной, называют ?) ?) ?) ?) Вопрос id:784700 Условие является ?) необходимым признаком расходимости ряда ?) необходимым и достаточным признаком сходимости ряда ?) необходимым признаком сходимости ряда ?) достаточным признаком сходимости ряда Вопрос id:784703 Функциональный ряд ?) сходится при ?) сходится при ?) расходится при ?) сходится при Вопрос id:784707 Функциональный ряд по признаку Даламбера ?) сходится при ?) расходится при ?) расходится при всех ?) сходится при Вопрос id:784709 Функциональный ряд сходится, если ?) ?) ?) ?) Вопрос id:784711 Функциональный ряд в точках ?) - расходится, а и - сходится ?) , , - сходится ?) , , - расходится ?) и - расходится и сходится Вопрос id:784744 Функциональный ряд в точках ?) и , - сходится ?) и - сходится, - расходится ?) - расходится, и - сходится ?) и - сходится, - расходится Вопрос id:784765 Функциональный ряд в точках ?) - сходится, и - расходится ?) , и - расходится ?) и - сходится, - расходится ?) , и - сходится Вопрос id:784787 Функциональный ряд называется равномерно сходящимся в области , если для любого можно указать такое число , ___, что при всех номерах неравенство справедливо для всех точек ?) зависящее от и не зависящее от ?) не зависящее от и не зависящее от ?) зависящее от и зависящее от ?) не зависящее от и зависящее от Вопрос id:784795 Функциональным является ряд ?) ?) ?) ?) Вопрос id:784800 Функция ?) не является ни четной, ни нечетной ?) является функцией общего вида ?) является нечетной ?) является четной Вопрос id:784802 Функция ?) является четной ?) является нечетной ?) является функцией общего вида ?) не является ни четной, ни нечетной Вопрос id:784818 Функция , заданная на множестве точек , непрерывна в точке , если ?) ?) функция определена в точке ?) существуют и ?) функция определена в точке и ее -окрестности |
Copyright testserver.pro 2013-2024