Тесты онлайн, бесплатный конструктор тестов. Психологические тестирования, тесты на проверку знаний.
Список вопросов базы знанийМатематика (курс 11)Вопрос id:775519 Алгоритм называется неустойчивым, если ?) большие изменения в исходных данных приводят к малому изменению результата ?) большие изменения в исходных данных не изменяют окончательный результат ?) малые изменения исходных данных не изменяют окончательный результат ?) малые изменения исходных данных и погрешности округления приводят к значительному изменению окончательных результатов Вопрос id:775520 Аппроксимация называется непрерывной, если аппроксимирующая функция φ(x) ?) строится на отрезке [a, b] ?) является непрерывной ?) аппроксимирует исходную непрерывную функцию f(x) ?) является многочленом Вопрос id:775521 Аппроксимация первой производной имеет погрешность порядка ?) 4 ?) 2 ?) 0,5 ?) 1 Вопрос id:775522 Аппроксимация первой производной имеет погрешность порядка ?) 3 ?) 2 ?) 1,5 ?) 1 Вопрос id:775523 Аргумент числа z = x + iy (x y > 0) равен ?) ?) ?) ?) Вопрос id:775524 В окрестности точки z = 0 справедливо разложение ?) ?) ?) ?) Вопрос id:775525 В таблично заданной функции производная в точке вычислена с использованием шагов h и 2h . Получены величины = 0,8 и = 0,65. Погрешность формулы для вычисления производных имеет порядок . Тогда уточненное значение производной по методу Рунге равно ?) 0,805 ?) 0,87 ?) 0,7 ?) 0,75 Вопрос id:775526 В таблично заданной функции производная в точке вычислена с использованием шагов h и 2h . Получены величины = 1,5 и = 1,3. Погрешность формулы для вычисления производных имеет порядок . Тогда уточненное значение производной по методу Рунге равно ?) 1,6 ?) 1,65 ?) 1,7 ?) 1,4 Вопрос id:775527 В таблично заданной функции производная в точке вычислена с использованием шагов h и 2h . Получены величины = 2,4 и = 2,7. Погрешность формулы для вычисления производных имеет порядок . Тогда уточненное значение производной по методу Рунге равно ?) 2,457 ?) 2,207 ?) 2,5 ?) 2,3 Вопрос id:775528 Величина равна ?) ?) ?) ?) Вопрос id:775529 Верным является утверждение ?) если общий член ряда стремится к нулю, то ряд сходится ?) ряд сходится, если ?) ряд расходится, если общий член ряда стремится к нулю ?) если ряд сходится, то его общий член стремится к нулю Вопрос id:775530 Верным является утверждение, что если ?) , то ряд расходится ?) , то ряд расходится ?) , то ряд расходится ?) , то ряд сходится Вопрос id:775531 Выбор начального приближения на сходимость или расходимость метода Зейделя при решении систем линейных уравнений ?) влияет, если матрица не симметричная ?) влияет, если матрица не является верхней треугольной ?) не влияет ?) влияет всегда Вопрос id:775532 Вычет функции в полюсе а порядка n вычисляется по формуле ?) ?) ?) ?) Вопрос id:775533 Вычет функции в бесконечности равен ?) ?) 0 ?) ?) Вопрос id:775534 Вычетом функции в конечной изолированной особой точке а этой функции называется выражение ?) ?) ?) ?) Вопрос id:775535 Гармонический ряд является ?) расходящимся ?) сходящимся ?) сходящимся абсолютно ?) сходящимся условно Вопрос id:775536 Гармоническим рядом называется ряд ?) ?) ?) ?) Вопрос id:775537 Гармоническим рядом является ряд ?) ?) ?) ?) Вопрос id:775538 Гармонической называется функция , удовлетворяющая уравнению ?) ?) ?) ?) Вопрос id:775539 Дан ряд ; применив признак Даламбера, получим, что ?) требуется дополнительное исследование ?) ряд сходится ?) ряд расходится ?) ряд сходится условно Вопрос id:775540 Дана система и задано начальное приближение (1; 1). Один шаг метода Зейделя дает первое приближение ?) (0,6 ; 1,1) ?) (0,6 ; 1) ?) (0,1 ; 1,06) ?) (0,6 ; 1,06) Вопрос id:775541 Дана система уравнений . Для сходимости итерационного метода ее надо записать в виде ?) ?) ?) ?) Вопрос id:775542 Дано нелинейное уравнение cos2x - 2x + π ∕ 4 = 0 и начальное условие x0 = π ∕ 4. Первое приближение метода Ньютона x1 будет равно ?) π ∕ 2 ?) 3π ∕ 16 ?) 5π ∕ 16 ?) 3π ∕ 4 Вопрос id:775543 Дано нелинейное уравнение x2 − sinx + 1 = 0 и начальное приближение x0 = 0. Первое приближение x1 в методе Ньютона равно ?) 0,5 ?) 0,1 ?) −1 ?) 1 Вопрос id:775544 Дано уравнение x = sinx + 1 и начальное приближение x0 = π ⁄ 2 . Первое приближение x1 метода простой итераций равно ?) 0 ?) π ?) 1 ?) 2 Вопрос id:775545 Даны два ряда (1) и (2); верное утверждение - ?) оба ряда сходятся ?) оба ряда расходятся ?) первый ряд сходится, второй - расходится ?) первый ряд расходится, второй - сходится Вопрос id:775546 Даны ряды (1) и (2); верное утверждение - ?) первый ряд сходится, второй - расходится ?) первый ряд расходится, второй - сходится ?) оба ряда расходятся ?) оба ряда сходятся Вопрос id:775547 Даны ряды (1) , (2) и (3), верно утверждение, что ?) ряд (1) сходится, ряд (2) расходится, ряд (3) сходится ?) три ряда сходятся ?) ряд (1) сходится, ряды (2) и (3) расходятся ?) ряды (1) и (2) сходятся, ряд (3) расходится Вопрос id:775548 Даны ряды (1) и (2); верно утверждение - ?) первый ряд cходится абсолютно, второй - условно ?) оба ряда сходятся абсолютно ?) оба ряда сходятся условно ?) оба ряда расходятся Вопрос id:775549 Даны ряды (1) и (2); верное утверждение - ?) оба ряда сходятся ?) первый ряд расходится, второй - сходится ?) первый ряд сходится, второй - расходится ?) оба ряда расходятся Вопрос id:775550 Действительная часть числа z равна ?) ?) ?) ?) Вопрос id:775551 Для знакоположительного ряда , исследование сходимости ряда с помощью d есть ?) признак Даламбера ?) необходимый признак сходимости ?) радикальный признак Коши ?) предельный признак сравнения Вопрос id:775552 Для знакоположительного ряда , тогда, если ?) , то ряд сходится ?) , то ряд сходится ?) , то ряд расходится ?) , то ряд сходится Вопрос id:775553 Для знакоположительных рядов , где , исследование сходимости ряда с помощью k есть ?) предельный признак сравнения ?) признак Даламбера ?) радикальный признак Коши ?) необходимый признак сходимости Вопрос id:775554 Для линейной системы уравнений вычисления по итерационной формуле называют методом ?) Зейделя ?) такого метода нет ?) Ньютона ?) релаксации Вопрос id:775555 Для линейной системы уравнений вычисления по итерационной формуле называют методом ?) Гаусса ?) Ньютона ?) Зейделя ?) Простой итерации Вопрос id:775556 Для матрицы A = метод Зейделя x(k+1) = Ax(k) будет ?) сходящимся ?) расходящимся ?) сходящимся при начальном векторе ?) сходящимся при начальном векторе Вопрос id:775557 Для однолистности отображения в области D необходимо и достаточно чтобы область D не содержала никаких двух различных точек и , связанных соотношением ?) ( - целое) ?) ( - целое) ?) ?) ( - целое) Вопрос id:775558 Для однолистности отображения в области D необходимо и достаточно чтобы область D не содержала никаких двух различных точек и , связанных соотношением ?) (n - целое) ?) (n - целое) ?) (n - целое) ?) (n - целое) Вопрос id:775559 Для решения нелинейного уравнения второй порядок сходимости имеет метод ?) Ньютона ?) половинного деления ?) простой итерации ?) Гаусса Вопрос id:775560 Для ряда общий член равен ?) ?) ?) ?) Вопрос id:775561 Для таблично заданной функции значение y(0,3) , вычисленное с помощью линейной интерполяции равно ?) 0,9 ?) 0,88 ?) 0,9033 ?) 0,94 Вопрос id:775562 Для таблично заданной функции Результат линейной интерполяции при x=0.1 дает значение ?) 1,02 ?) 0,95 ?) 0,98 ?) 0,97 Вопрос id:775563 Для таблично заданной функции значение y(0,1) , вычисленное с помощью квадратичной интерполяции равно ?) 0,02 ?) 0,028 ?) 0,03 ?) 0,04 Вопрос id:775564 Для того чтобы ряд сходился, необходимо и достаточно, чтобы ?) ?) ?) ?) Вопрос id:775565 Для того чтобы функция определенная в окрестности точки имела в этой точке производную необходимо и достаточно чтобы ?) имела конечный предел в точке ?) была непрерывна в точке ?) была дифференцируема в точке в смысле С ?) была дифференцируема в точке в смысле R2 Вопрос id:775566 Для функции точка является ?) устранимой ?) полюсом ?) точкой ветвления ?) существенной особой точкой Вопрос id:775567 Для функции точка является ?) полюсом ?) существенной особой точкой ?) устранимой ?) неизолированной особой точкой Вопрос id:775568 Для функции точка является ?) точкой ветвления ?) полюсом ?) устранимой ?) существенной особой точкой |
Copyright testserver.pro 2013-2024