Тесты онлайн, бесплатный конструктор тестов. Психологические тестирования, тесты на проверку знаний.
Список вопросов базы знанийВведение в теорию случайных процессов
Вопрос id:1606406 Имеется система масcового обслуживания с неограниченной очередью, n - число каналов, l - интенсивность потока заявок, m - интенсивность потока обслуживания, r - загрузка системы, pn - вероятность того, что заняты все каналы и нет очереди; тогда среднее число заявок в очереди ?) ![]() ?) ![]() ?) ![]() ?) ![]() Вопрос id:1606407 Имеется система масcового обслуживания с неограниченной очередью, n - число каналов, l - интенсивность потока заявок, m - интенсивность потока обслуживания, r - загрузка системы, pn - вероятность того, что заняты все каналы и нет очереди; тогда среднее время ожидания в очереди ?) ![]() ?) ![]() ?) ![]() ?) ![]() Вопрос id:1606408 Имеется система масcового обслуживания с неограниченной очередью, n - число каналов, l - интенсивность потока заявок, m - интенсивность потока обслуживания, r - загрузка системы, pn - вероятность того, что заняты все каналы и нет очереди; тогда среднее число занятых каналов ?) z = mpn ?) ![]() ?) z = r ?) z = lpn Вопрос id:1606409 Имеется система масcового обслуживания с неограниченной очередью, n - число каналов, l - интенсивность потока заявок, m - интенсивность потока обслуживания, r - загрузка системы, pn - вероятность того, что заняты все каналы и нет очереди; тогда среднее время пребывания в системе ?) ![]() ?) ![]() ?) ![]() ?) ![]() Вопрос id:1606410 Имеется система масового обслуживания с неограниченной очередью, n - число каналов, l - интенсивность потока заявок, m - интенсивность потока обслуживания, r - загрузка системы, pn - вероятность того, что заняты все каналы и нет очереди; тогда среднее число заявок в системе ?) ![]() ?) ![]() ?) ![]() ?) ![]() Вопрос id:1606411 Имеется система с отказами и n каналами, интенсивностью потока заявок l, интенсивностью потока обслуживания m, загрузкой системы r, средним числом заявок в очереди r и вероятностью того, что система свободна p0, тогда показатели эффективности работы системы таковы: вероятность того, что система свободна ?) ![]() ?) ![]() ?) ![]() ?) ![]() Вопрос id:1606412 Имеется система с отказами и n каналами, интенсивностью потока заявок l, интенсивностью потока обслуживания m, загрузкой системы r, средним числом заявок в очереди r и вероятностью того, что система свободна p0, тогда показатели эффективности работы системы таковы: относительная пропускная способность ?) ![]() ?) ![]() ?) ![]() ?) ![]() Вопрос id:1606413 Имеется система с отказами и n каналами, интенсивностью потока заявок l, интенсивностью потока обслуживания m, загрузкой системы r, средним числом заявок в очереди r и вероятностью того, что система свободна p0, тогда показатели эффективности работы системы таковы: абсолютная пропускная способность ?) ![]() ?) ![]() ?) ![]() ?) ![]() Вопрос id:1606444 Имеется система с отказами и n каналами, интенсивностью потока заявок l, интенсивностью потока обслуживания m, загрузкой системы r, средним числом заявок в очереди r и вероятностью того, что система свободна p0, тогда показатели эффективности работы системы таковы: среднее число занятых каналов ?) ![]() ?) ![]() ?) ![]() ?) ![]() Вопрос id:1606445 Имеется система с отказами и n каналами, интенсивностью потока заявок l, интенсивностью потока обслуживания m, загрузкой системы r, средним числом заявок в очереди r и вероятностью того, что система свободна p0, тогда показатели эффективности работы системы таковы: вероятность отказа ?) ![]() ?) ![]() ?) ![]() ?) ![]() Вопрос id:1606446 Интенсивность потока заявок в системе массового обслуживания - это ?) среднее число заявок, приходящих в систему за единицу времени ?) число заявок, приходящих в систему за время ее работы ?) среднее число обслуженных заявок в единицу времени ?) доля обслуженных заявок среди поступивших Вопрос id:1606447 Ковариационная функция B(t) стационарного случайного процесса как функция аргумента t является ?) периодической ?) нечетной ?) четной ?) возрастающей Вопрос id:1606448 Ковариационная функция B(t) стационарного случайного процесса при t = 0 равна ?) нулю ?) постоянной величине ?) дисперсии этого процесса ?) периодической функции Вопрос id:1606449 Ковариационная функция случайного процесса X(t) определяется формулой ?) B(t, s) = cov[X(t), X(t)2] ?) B(t, s) = cov[X(t), X(s)] ?) B(t, s) = cov[X(t - s), X(t + s)] ?) B(t, s) = cov[X(t), X(t + s)] Вопрос id:1606450 Конечномерным распределением случайного процесса в моменты t1, …, tn называется распределение многомерной случайной величины, составленной в моменты t1, …, tn из ?) дисперсий ?) сечений ?) траекторий ?) математических ожиданий Вопрос id:1606451 Линейный прогноз ![]() ?) ![]() ?) ![]() ?) ![]() ?) ![]() Вопрос id:1606452 Линейный прогноз является наилучшим из возможных для процессов ?) стационарных ?) с независимыми приращениями ?) гауссовских ?) марковских Вопрос id:1606453 Марковский случайный процесс обладает следующим свойством: ?) его конечномерные распределения нормальны ?) это процесс с дискретным временем ?) это процесс с независимыми значениями ?) при известном настоящем его будущее не зависит от прошлого Вопрос id:1606454 Математическое ожидание случайного процесса Z(t) = Xt + Yt2, где MX = 3, MY = -2, равно ?) 6t ?) 3 - 2t ?) 3t - 2t2 ?) 3t + 2t2 Вопрос id:1606455 Математическое ожидание стационарного случайного процесса есть ?) нечетная функция ?) положительная величина ?) постоянная величина ?) периодическая функция Вопрос id:1606456 Множество возможных значений случайного процесса называется ?) конечномерным распределением ?) фазовым пространством ?) пространством элементарных событий ?) законом распределения Вопрос id:1606457 Модуль ковариационной функции B(t) стационарного случайного процесса достигает при t = 0 ?) наибольшего значения ?) нуля ?) любого промежуточного значения ?) наименьшего значения Вопрос id:1606458 Наибольший средний выигрыш в управляемом марковском процессе достигается на стратегии ?) наилучшей ?) принятой ?) оптимальной ?) допустимой Вопрос id:1606459 Оценка ![]() ?) ![]() ?) ![]() ?) ![]() ?) ![]() Вопрос id:1606460 Оценка ![]() ?) ![]() ?) ![]() ?) ![]() ?) ![]() Вопрос id:1606461 Поток является простейшим, если он обладает свойствами: 1) стационарность; 2) непрерывность; 3) ординарность; 4) дискретность; 5) стохастичность; 6) отсутствие последействия ?) 3, 4, 5 ?) 2, 4, 6 ?) 1, 2, 3 ?) 1, 3, 6 Вопрос id:1606462 При решении задач оптимального линейного прогнозирования считают известной, по крайней мере, ?) конечномерные распределения ?) траектории процессов ?) ковариационную функцию ?) математическое ожидание и дисперсию Вопрос id:1606463 Прогноз неизвестных значений стационарного случайного процесса есть функция от ?) траекторий случайного процесса ?) последней по времени реализации ?) известных значений случайного процесса ?) корреляционной функции случайного процесса Вопрос id:1606464 Производительность канала системы массового обслуживания M и среднее время обслуживания MTобсл. связаны соотношением ?) MTобсл. = m ?) MTобсл. = e-m ?) MTобсл. = ![]() ?) MTобсл. = ln/u Вопрос id:1606465 Промежуток времени T между соседними событиями простейшего потока имеет функцию распределения ?) нормальную ?) Коши ?) логнормальную ?) показательную Вопрос id:1606466 Простейший поток является ?) пуассоновским ?) гауссовским ?) потоком Бернулли ?) биномиальным Вопрос id:1606467 Реализация случайного процесса - это ?) неслучайная функция ?) неизвестная функция ?) случайная функция ?) константа Вопрос id:1606468 Самая элементарная классификация случайных процессов - по ?) «математическим ожиданиям» и «дисперсиям» ?) «состояниям» и «математическим ожиданиям» ?) «времени» и «математическим ожиданиям» ?) «времени» и «состояниям» Вопрос id:1606469 Связь между абсолютной A и относительной пропускной способностью a системы, где l - интенсивность потока заявок, выражается соотношением ?) ![]() ?) ![]() ?) ![]() ?) ![]() Вопрос id:1606470 Семейство реализаций случайного процесса может быть получено в результате ?) нескольких стохастических экспериментов ?) вычисления числовых характеристик случайного процесса ?) построения графиков распределений ?) составления конечномерных распределений Вопрос id:1606471 Сечение случайного процесса X(t) = j(t, w) получается при ?) фиксированном w = w0 ?) фиксированных t = t0 и w = w0 ?) вычислении математического ожидания ?) фиксированном t = t0 Вопрос id:1606472 Системы массового обслуживания предназначены для многократного проведения некоторой однотипной элементарной операции, которая называется операцией ?) развития ?) ожидания ?) действия ?) обслуживания Вопрос id:1606473 Случайная последовательность - это случайный процесс ?) с дискретным временем ?) с независимыми значениями ?) с непрерывным временем ?) со временем на конечном отрезке Вопрос id:1606474 Случайный процесс X(t) = 2Vt, где V - случайная величина, имеющая стандартно нормальное распределение. Его дисперсия s2(t) равна ?) 4 ?) 2t2 ?) 4t2 ?) 2t Вопрос id:1606475 Случайный процесс X(t) = 3Vt, где V - случайная величина, имеющая стандартно нормальное распределение. Его ковариация B(t,s) равна ?) 3ts ?) 3(t + s) ?) 3(t - s)2 ?) 9ts Вопрос id:1606476 Случайный процесс X(t) = Vt + 5, где V(t) - случайная величина, имеющая стандартно нормальное распределение, f(x, t) - плотность распределения сечения этого процесса имеет вид ?) ![]() ?) ![]() ?) ![]() ?) ![]() Вопрос id:1606477 Случайный процесс X(t) = Vt - 1, где V(t) - случайная величина, имеющая стандартно нормальное распределение. Его математическое ожидание m(t) равно ?) - 1 ?) t + 1 ?) t - 1 ?) + 1 Вопрос id:1606478 Случайный процесс называется гауссовским, если все его конечномерные распределения являются ?) нормальными ?) биномиальными ?) распределениями Пуассона ?) распределениями Эрланга Вопрос id:1606479 Случайным процессом X(t) называется процесс, значение которого при любом фиксированном t = t0 является ?) числом ?) случайной величиной ?) непрерывной функцией ?) постоянной функцией Вопрос id:1606480 Среднее время между соседними событиями простейшего потока с параметром l равно ?) ![]() ?) l2 ?) ![]() ?) l Вопрос id:1606481 Среднее число заявок, которое может обслужить система массового обслуживания, есть ?) интенсивность потока заявок ?) относительная пропускная способность ?) интенсивность потока обслуживания ?) абсолютная пропускная способность Вопрос id:1606482 Среднее число событий простейшего потока с параметром l, наступивших за единицу времени, равно ?) l2 ?) ![]() ?) l ?) ![]() Вопрос id:1606483 Средний суммарный выигрыш в управляемом марковском процессе является функцией от ?) первого принятого решения ?) траектории процесса ?) выбранной стратегии ?) переходной функции Вопрос id:1606484 Цена «предприятия по эксплуатации» системы, соответствующей управляемому марковскому процессу, - это значение суммарного выигрыша на стратегии ?) наилучшей ?) наихудшей ?) оптимальной ?) допустимой Вопрос id:1606485 Классификацию систем массового обслуживания проводят в зависимости от: 1) количества каналов обслуживания; 2) наличия или отсутствия очереди; 3) характера ожидания заявок в очереди; 4) интенсивности потока заявок; 5) интенсивности потока обслуживания; 6) пропускной способности системы ?) 1, 2, 3, 4, 5, 6 ?) 1, 2, 5, 6 ?) 1, 3, 4, 6 ?) 1, 2, 3
|
Copyright testserver.pro 2013-2024